		Roll No.	
Tota	l No. o	of Questions: 8] [Total No. of Printed P	ages: 2
(.)		EGS-218 _{Xs} ← 2	5 (
	B.E. 4	4th Semester (CGPA) CSE (Zero Ser Examination - 2018	m.)
	77.00	THEORY OF COMPUTATION	
_	HIE S	Paper-CS-405	
Tin	ne:3 F	Hours] [Maximum Mar	ks:60
No		ttempt any five questions out of uestions.	eight
1.	(a)	Discuss NDFA with example.	6
	(b)	Design a FA that accepts set of string that every string ends in 00.	s such
2.	(a)	Explain context free grammer example.6	with
	(b)	Design a DFA for the Lan $L = \{ w : n_a = 1, w \in (a, b)^* \}$	guage
3.	(a)	Discuss the closure properties of R languages.	egular 6
	(b)	Discuss the Myhill-Nerode Theorer the help of suitable example.	_
4.	(a)	Differentiate between Moore Machi Melay Machine.	and the same of
EG	S-21		201

11.14 - Dates	(b)	Prove the following identity:	6
2		(a*ab+ba)*a*=(a+ab+ba)*.	nette:
5.	(a)	Consider the grammer G, with prod	luction.
	n	$S \rightarrow aXY$	
, K	o Bem.	X > bYb (AHD)) reterence of	
		$Y \rightarrow X/E$	
-		Construct a parse tree for $w = abbb$	b. 6
Ŋà.	(b)	What do you understand by amb grammers? Explain with the help of example.	7
6.	(a)	What is PDA ² . What type of Languaccepted by PDA?	ages are
ii za a	(b)	Construct the equivalent PDA following CFG's.	for the
Tijs/	i roma	S → Saa aSa aaS	
7.	(a)	Explain the Turing machine halting p	roblem.6
955	(b)	Explain Markov Algorithms.	6
8.	Write short notes on any three: $4 \times 3 = 12$		
¥ .	(i)	CNF and GNF	
2:17	(ii)	Turing thesis	
	(iii)	Post Correspondence problem	
Link	(iv)	Recursive functions	
EC	SS-21	8 (2) T	urn Over